BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 39 645—650 (1966)

Calculation of the Three π - π * Absorptions of Conjugated Systems by Hückel MO Method

By Kichisuke Nізнімото[†]

Mellon Institute, Pittsburgh, Pennsylvania, U. S. A.

(Received April 22, 1965)

Correlation relations between the Hückel molecular orbital energies and the absorption wavelengths of the 1L_a , 1L_b , and 1B_b species of an alternant hydrocarbon are presented. After a small modification, the present relations are applied fairly well to the calculations of the electronic spectra of α -substituted hydrocarbon and N-heterobenzenes. This shows us that the nature of the electronic spectra of these compounds are very similar with those of parent hydrocarbon. On the other band, the calculation for β -substituted derivatives does not give good results, although the agreement between the calculated and observed values is semi-quantitatively satisfactory. This should be attributed to the complicated configuration interaction scheme between the lower excited configurations of the molecule.

It is widely recognized that the Hückel molecular orbital theory¹⁾ (HMO theory) provides very useful theoretical information for the prediction of the various ground state properties of the conjugated molecules, such as bond distances, reactivity, resonance energy, and dipole moment, in spite of its appalling simplicity. However, only a few attempts²⁾ made to positively treat the electronic spectra of the aromatic compounds by HMO theory, because this theory does not explicitly, but only implicitly, take the electron repulsions into account. It would be, however, very convenient when we can calculate the electronic spectra of these compounds in the framework of HMO theory.

The present paper shows that there is a possibility for the prediction of the main three absorptions of a given aromatic compound in the near ultraviolet or visible region by HMO theory, when we set up an appropriate HMO transition energy - absorption wavelength relationship, just as in the case of the bond length calculation for which we usually use Coulson's bond order - bond length relation.3) In this paper, first of all, we will provide some relationships between HMO transition energies and the absorption wavelengths of ¹L_a, ¹L_b, and ¹B_b species for the alternant hydrocarbon. Secondly, we will apply these relations to some N-heterocycles and aromatic derivatives. All of the HMO calculations are carried out by the IBM 7090 computer of the University of Pittsburgh.

HMO Energy - Absorption Wavelength Relations

Alternant Hydrocarbons.—The spectra of an aromatic hydrocarbon in the longer wavelength region has usually three absorption maxima: weak, medium, and intense bands, which on an empirical basis Clar⁴) classified as α -, p-, and β bands, respectively. However, on a theoretical point of view, a spectroscopic symbolism developed by Platt⁵⁾ on the basis of free electron model is more convenient for the classification of the absorption bands. According to this nomenclature, the ¹L_a band (Clar's p-band) is associated with a transition from the highest occupied MO, ψ_1 , to the lowest vacant MO, $\psi_{1'}$. A convention given in the previous paper⁶⁾ is used for numbering of MO. In HMO theory, the MO energy associated with ith MO, ϕ_i , is expressed by

$$\psi_i; \quad \varepsilon_i = \alpha + m_i \beta \tag{1}$$

where α and β are conventional Coulomb and resonance integrals, respectively. The eigenvalue m_t is a root of the secular determinant. The HMO transition energy associated with 1L_a absorption is, therefore, given by

$$E(^{1}L_{a}) = (m_{1}-m_{1'})\beta$$

or

$$\Delta m = E({}^{1}\mathbf{L}_{a})/\beta = m_{1} - m_{1'} \tag{2}$$

For the convenience, an excited configuration associated with one electron transition from an

[†] Visiting Fellow, April 1964 to April 1965. Permanent Address: Department of Chemistry, Faculty of Science, Osaka City University, Osaka.

¹⁾ A. Streitwieser, Jr., "Molecular Orbital Theory for Organic Chemists," John Wiley & Sons, Inc., New York (1961).

²⁾ For example, Ref. 1, p. 202.

³⁾ C. A. Coulson, Proc. Roy. Soc., A169, 413 (1939).

⁴⁾ E. Clar, "Aromatische Kohlenwasserstoffe," Springer-Verlag, Berlin (1952).

J. R. Platt, J. Chem. Phys., 17, 484 (1949); J. Opt. Soc. Am., 43, 252 (1953).

⁶⁾ K. Nishimoto and R. Fujishiro, This Bulletin, 37, 1660 (1964).

								/*		
TABLE I	CALCULATED	AND	OBSEDUED	A REOD PTION	WAVELENGTHS	FOR	HYDROCARBONS	(in i	mu)	1

	$\lambda(^{1}L_{a})$		λ(¹I.	_{-b})	$\lambda(^{1}B_{b})$		
	Calcd.	Obs.	Calcd.	Obs.	Calcd.	Obs.	
Acetylene	161	166*	_	_	-	-	
Ethylene	174	1741)		-		_	
Benzene	190	1902),*	264	2642)	179	179^{2}	
Naphthalene	283	2852)	316	3152)	221	2212)	
Anthracene	380	3752)	352		253	$252^{2)}$	
Tetracene	478	4712)	378	_	276	2742)	
Pentacene	579	5822)	396	4282)	294	3032)	
Phenanthrene	286	2932)	361	3452)	261	2512)	
Chrysen	320	3192)	374	360 ²)	273	2672)	
Picene	328	3292)	406	3762)	303	287^{2}	
3, 4-Benzphenanthrene	320	3152)	394	3722)	273	2812)	
Benzanthracene	354	3592)	411	3852)	307	390^{2}	
Pyrene	358	3342)	372	3722)	270	2722)	

- 1) P. G. Wilkinson and H. L. Johnston, J. Chem. Phys., 18, 190 (1950).
- 2) E. Clar, "Polycyclic Hydrocarbons," Vols. 1 and 2, Academic Press, New York (1964).
- * See text.

occupied orbital, ϕ_i , to a vacant orbital, ϕ_j , is represented by χ_{i-j} in this paper. In an alternant hydrocarbon, the two excited configurations, χ_{1-2} and χ_{2-1} are degenerate, namely

$$\Delta m = m_1 - m_{2'} = m_2 - m_{1'} \tag{3}$$

and interact each other by the first order configuration interaction, as shown in Fig. 1. This configuration interaction gives rise to a highly allowed intense 1B_b band (Clar's β band) and a very weak 1L_b band (Clar's α -band). According to the Pariser-Parr-Pople theory, $^{7)}$ in which the electron repulsions are explicitly taken into account, the energy associated with a singlet electronic transition $^1\chi_{i-j}$ is given by:

$$\Delta E_{i-j} = \varepsilon_j^{\mathrm{F}} - \varepsilon_j^{\mathrm{F}} - [ii|jj] + 2[ij|ij] \tag{4}$$

where ε_i^F and [ij|kl] are the Hartree-Fock orbital energy associated with ψ_i and the electron repulsion integral over MO's, respectively. The peculiar degeneracy in an alternant hydrocarbon,

$$\Delta E_{1-2'} = \Delta E_{2-1'}$$

is still valid in Pariser-Parr-Pople treatment. However, the comparison of Eq. 2 with Eq. 4 makes clear that in the discussion of electronic spectra, the conventional resonance integral β does not have its original meaning, which is a characteristic integral for a given carbon-carbon bond, but it is a complicated function of electron repulsion integrals and core integrals over atomic orbitals. The value should, therefore, depend on the molecular shape and varies from molecule to molecule. However, as shown in the previous paper, 6 in linear polyacene series the value of ε_i and [ij|kl] monotonously decreases with increase in the molecular size.

This suggests that in a linear polyacene series there are some relationships between the wavelengths of three main absorptions, $\lambda({}^{1}L_{a})$, $\lambda({}^{1}L_{b})$, and $\lambda({}^{1}B_{b})$, and the corresponding Δm values of Eqs. 2 and 3. The plot of the absorption wavelength against the $1/\Delta m$ in Fig. 2 shows excellent correlations. The correlations are satisfactorily represented by:

$$\lambda(^{1}L_{a}) = 474(\Delta m)^{-1/2} - 145 \,\mathrm{m}\mu \tag{5}$$

$$\lambda(^{1}L_{b}) = 428(\Delta m)^{-1} + 50 \,\mathrm{m}\mu \tag{6}$$

$$\lambda(^{1}B_{b}) = 358(\Delta m)m\mu \tag{7}$$

respectively. Rather similar relations have been found by Streitwieser,1) except for 1La species. The calculated wavelengths for various hydrocarbons are compared with the experimental data in Table I. The agreement between the calculated and observed values is satisfactory in the whole. From Eq. 5, the conventional resonance integrals for ethylene and acetylene are estimated as $\beta_{C=C}=1.1\beta$ and $\beta_{C\equiv C}=1.2\beta$, In benzene and acetylene, the respectively. configurations $\chi_{1-1'}$ and $\chi_{2-2'}$ are degenerate and interact each other. This gives rise to a weak ¹L_a and strong ¹B_a absorptions. Therefore, the calculated $\lambda(^{1}L_{a})$ should be compared with the harmonic mean of the observed $\lambda({}^{1}L_{a})$ and $\lambda({}^{1}B_{a})$.

The correlation equations, 5 and 7, have the following noteworthy features; that is, the transition energy associated with the ${}^{1}B_{b}$ species is proportional to the corresponding HMO energy $(\beta=-3.46 \,\mathrm{eV.})$, whereas $\lambda({}^{1}L_{a})$ varies linearly with the inverse square root of Δm . This seems to suggest us that when we use the valence bond language the excitation from the ground state to the ${}^{1}L_{a}$ state may be described by the change in the covalent structure and that to ${}^{1}B_{b}$ state may be represented by the change from covalent to

⁷⁾ K. B. Wiberg, "Physical Organic Chemistry," John Wiley & Sons, Inc., New York (1963), p. 116.

charge resonance structure. Indeed, every ¹L_a absorption of a hydrocarbon is accompanied with the vibrational fine structure which is resulted from a vibronic coupling. Whereas, the ¹B_b absorption is usually consisted of only one sharp and high peak, as the absorption band in a charge resonance system, e.g. cyanine analogs8) and some organic ions.9) In polyacene series, the ¹L_a absorption is polarized to the direction of the molecular short axis.10) On the other hand, the 1Lb and ¹B_b absorptions are polarized in the direction of the molecular long axis. Consequently, electron displacement in the 1La species is limited at the largest in 2.78 A, however in the latter species the largest electron displacement will be proportional to the number of benzene rings. This situation may partly be responsible to such characteristic shifts as represented by the correlation equations.

a-Substituted Hydrocarbons.—In an aromatic derivative, the peculiar degeneracy of the two excited configurations, $\chi_{1-2'}$, and $\chi_{2-1'}$, of the parent hydrocarbon is removed by the perturbation of the substituent. Furthermore, this perturbation leads to an interaction between all configurations. However, as pointed out in the previous paper, 6) in α -substituted hydrocarbon which has an auxochromic substituent in the α -position, such as α -naphthol, $\chi_{1-2'}$ strongly interacts with $\chi_{2-1'}$, but only slightly with χ_{1-1} , so that the nature of the π - π * absorption is practically the same as that of the parent hydrocarbon. We will, therefore, be able to calculate the $\lambda({}^{1}L_{a})$ of an α -derivative from Eq. 5. On the other hand, the calculations of the $\lambda(^{1}L_{b})$ and $\lambda(^{1}B_{b})$ are very difficult, because there is no means of estimating the interaction energy between the configurations χ_{1-2} and χ_{2-1} . The configurational energy associated with χ_{1-2} is approximately given by a harmonic mean of the hypothetical $\lambda({}^{1}B_{b})$ and $\lambda({}^{1}L_{b})$, which are calculated from Eqs. 6 and 7, using $\Delta m = m_1 - m_{2'}$. Similarly, the energy of χ_{2-1} is estimated. One approximation is that a geometric mean of Δm_{1-2} and Δm_{2-1} is assigned to Δm . However, this approximation has not any theoretical background, but only an intuitive analogy with a well-known approximation for the interaction energy between two different molecules.¹¹⁾ In summarizing, the three absorption wavelengths of an α -substituted hydrocarbon are calculated from the following equations;

$$\lambda(^{1}L_{a}) = 474(\Delta m_{1})^{-1/2} - 145 \,\mathrm{m}\mu \tag{8}$$

$$\lambda(^{1}\mathbf{L}_{b}) = 428(\Delta m_{2})^{-1} + 50 \,\mathrm{m}\mu \tag{9}$$

$$\lambda(^{1}B_{b}) = 358(\Delta m_{2})^{-1}m\mu \qquad (10)$$

where

$$\Delta m_1 = m_1 - m_{1'}$$

$$\Delta m_2 = \sqrt{(m_1 - m_{2'})(m_2 - m_{1'})}$$

TABLE II. PARAMETERR FOR HMO CALCULATION

Atom core (X)	$\delta_{ m X}$	Bond (XY)a)	k_{XY}
C+	0	C = C	1
N+	0.5	C≕N	1.05
N2+	1.0	N===N	1.10
O2+	1.5	$C-NH_2$	0.8
F2+	2.0	C-OH	0.7
		C-F	0.6

a) == means an aromatic bond.

The HMO calculations are carried out using the parameters given in Table II. In Table II, the conventional Coulomb and resonance integrals are expressed as follows;

$$\alpha_{X} = \alpha + \delta_{X} \beta$$

$$\beta_{XY} = k_{XY} \beta$$

where δ_{X} and k_{XY} are the characteristic constants for atom core X and bond X-Y, respectively. It would be reasonable to compare α_X with the diagonal element of the Hartree-Fock operator, F_{XX} , over the π -AO of atom X. F_{XX} should be considered as the effective electronegativity of atom X in the molecule.12) To a first approximation, α_{x} is, therefore, given by the valence state electronegativity, which was circumstantially investigated by Prichard and Skinner¹³⁾ and Hinze and Jaffé¹⁴⁾. According to their study, the electronegativity in a given valence state increases almost linearly with the atomic number in the same period. The δ_X values given in Table II are in accord with their results. The calculated absorption wavelengths for some α -derivatives are compared with the experimental values in Table III. Table III shows that the simple correlations are still applicable to the prediction of the three main absorptions of these compounds.

Benzene Derivatives and N-Heterobenzenes.

—In the calculation of benzene's $\lambda(^{1}L_{a})$, we have used the harmonic mean of observed $\lambda(^{1}L_{a})$ and $\lambda({}^{1}B_{h})$ as the reference, because they come from two degenerated configurations χ_{1-1} and χ_{2-2} . In benzene derivatives and N-heterobenzenes, we can not neglect the configuration interaction between χ_{1-1} and χ_{2-2} . Fortunately, this configuration interaction energy has, however, practicallythe same value with that of benzene. 6,12,15) Sothat, in good approximation, the $\lambda({}^{1}L_{a})$ of a benzene derivative or a N-heterobenzene is given by

⁸⁾ L. G. S. Brooker, Revs. Modern Phys., 14, 275 (1942).

H. D. Leftin, J. Phys. Chem., 64, 1714 (1964).
 R. Pariser, J. Chem. Phys., 24, 250 (1956).
 M. Kurata, "Polymer Physics," Ed. by Phys. Soc. Japan, Asakura Shoten, Tokyo (1963), p. 71.

¹²⁾ N. Mataga and K. Nishimoto, Z. Physik. Chem. (Frankfult), 13, 140 (1957)

¹³⁾ H. O. Pritchard and H. A. Skinner, Chem. Revs., 55, 745

¹⁴⁾ J. Hinze and H. H. Jaffé, J. Am. Chem. Soc., 84, 540 (1962). 15) K. Nishimoto and R. Fujishiro, This Bulletin, 31, 1036

Table III. Calculated and observed absorption wavelengths for α -substituted hydrocarbons (in m μ)

Hydrocarbon	Substituent	$\lambda(^{1}L_{a})$		$\lambda(^{1}L_{b})$		$\lambda(^{1}B_{b})$	
Hydrocarbon		Calcd.	Obs.	Calcd.	Obs.	Calcd.	Obs.
Naphthalene	NH_2	305	3173)	327	3323)	231	2423)
	OH	291	2893)	320	3223)	225	2303)
	F	285	2914)	318	3164>	223	
Anthracene	NH_2	394	3975)	358	3685)	258	2605)
	OH	382	3893)	354	_	255	2533)
	\mathbf{F}	378		353		254	

- 3) H. Baba and S. Suzuki, This Bulletin, 34, 82 (1961); 35, 683 (1962).
- 4) T. Iredale and J. W. White, Trans. Faraday Soc., 56, 1719 (1960).
- 5) S. Suzuki and H. Baba, This Bulletin, 37, 519 (1964).

Table IV. Calculated and observed absorption wavelengths of benzene derivatives and N-heterobenzenes (in $m\mu$)

Parent compound	Substituent	λ(¹I Calcd.	Obs.	λ (1L Calcd.	Obs.	$\lambda({}^{1}B_{1}$ Calcd.	Obs.
Benzene	NH_2	227	2346)	285	2866)	196	1976)
	OH	213	2136)	273	2726)	186	1906)
	\mathbf{F}	207	2047)	268	2667)	182	
	H	204	2042)	264	2642)	179	1792)
Pyridine	2-OH	209	2058)	269	2698)	183	_
,	3-OH	212	2168)	273	2768)	186	
	4-OH	212	2228)	272	2358)	185	
	H	201		261	2518)	177	-
Pyridazine		200		259	2468)	177	
Pyrimidine		198	-	255	2438)	175	_
Pyrazine		198	-	257	2608)	172	_
s-Triazine		189	-	247	2228)	174	
s-Tetrazine	_	191	_	251	2528)	166	

- 6) H. Baba, This Bulletin, 34, 76 (1961).
- 7) K. Bowden and F. A. Braude, J. Chem. Soc., 1952, 1068.
- 8) S. F. Mason, ibid., 1959, 1247, 1253; 1957, 5010.

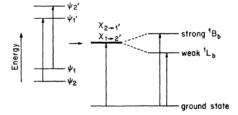


Fig. 1. First order configuration interaction in an alternant hydrocarbon.

$$\lambda(^{1}L_{a}) = 2 / \left[\frac{1}{\lambda_{1}} + \frac{1}{\lambda_{2}} - \sqrt{\left(\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{2}}\right)^{2} + (0.701)^{2} \times 10^{-6}} \right] m\mu$$

where

$$\lambda_1 = 474(\Delta m_3)^{-1/2} - 145$$

$$\lambda_2 = 474(\Delta m_4)^{-1/2} - 145$$

$$\Delta m_3 = m_1 - m_1'$$

$$\Delta m_4 = m_2 - m_2'$$

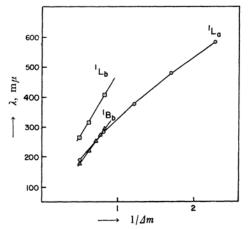


Fig. 2. Absorption spectra of linear polyacenes and the inverse of HMO energy differences:
 —: Calculated line.

O, □, △: Experimental data

Table V. Calculated and observed absorption wavelengths of miscellaneous compounds (in mμ)

Parent		$\lambda(^{1}L_{a})$		$\lambda(^{1}L_{b})$		$\lambda(^{1}B_{b})$		
compound	Substituent	Calcd.	Obs.	Calcd.	Obs.	Calcd.	Obs.	
Quinoline	H	279	2759>	314	3159)	220	2329)	
	2-OH	278	27010)	321	32410)	227	22410)	
	3-OH	287	27010)	325	33010)	230	_	
	4-OH	283		316		222	_	
	5-OH	292	_	321	32310)	226	24210)	
	6-OH	291	_	316	_	230	22710)	
	7 - OH	285	26310)	325	33310)	229	22710)	
	8-OH	295	-	321	30510)	226	24210)	
Isoquinoline	н	282	2809>	314	3209)	220	2179)	
	1-OH	286	-	317		222	_	
	3-OH	293	-	321	_	226	_	
	4-OH	293	29510)	320	33010)	225	23010>	
	5 - OH	294	30311)	321	32811)	226	23411)	
	6-OH	285	28611)	328	30011)	232	22911)	
	7-OH	290	30111)	326	33311)	230	22411)	
	8-OH	291	30411)	318	33411)	224	23311)	
Phenanthrene	Н	286	2932)	361	3452)	261	2512)	
	1-OH	295	30812)	367	33512)	267	24512)	
	2-OH	286	29212)	368	35512)	268	25512)	
	3-OH	292	30512)	364	35512)	264	24812)	
	4-OH	292	30212)	368	34012)	268	24512)	
	9-OH	295	30512)	366	35512)	266	24812)	
Azulene	-	361	35213)	389	65913)	286	27913)	

- 9) R. Muller and F. Dorr, Z. Elektrochem., 63, 1150 (1959).
- 10) S. F. Mason, J. Chem. Soc., 1957, 5010.
- 11) K. Nakanishi, M. Ohashi and H. Koike, This Bulletin, 34, 533 (1961).
- 12) C. Djerassi, H. Bendes and P. Sengupta, J. Org. Chem., 20, 1046 (1955).
- 13) J. F. Tilney-Bassett and W. A. Waters, J. Chem. Soc., 1959, 3123.

In Table IV, the calculated absorption wavelengths of a number of benzene compounds are shown and compared with the experimental data. Generally speaking, the agreement between them is satisfactory, except for the $\lambda(^{1}L_{b})$'s of s-triazine and 4-OH pyridine.

Micellaneous Compounds.—As pointed out in the previous paper, 6) in β -substituted derivatives, such as β -naphthol, all of the lower excited configurations interact strongly each other, so that the transition characteristics of the parent hydrocarbon are completely lost. Namely, we can not represent the ${}^{1}L_{a}$ species by χ_{1-1} and so on. In attempts to explain the electronic spectra of a β -derivative, we have therefore to consider the interaction among all configurations. It would be, however, desirable to examine to what extent we can expect the electronic spectra of a β -derivative, making the same assumption with an α -derivative. In Table V, the calculated absorption wavelengths for quinoline, isoquinoline, phenanthrene, and their hydroxy derivatives, using Eqs. 8-10 are given and compared with the experimental values. Generally speaking, although the agreement between calculated and observed values is semiquantitatively satisfactory, it is not quite so good as that of α -derivative.

In order to explain the electronic spectra of a β -derivative by HMO theory, we have to set up other correlation equations considering the complicated configuration interactions. The present correlation equations predict fairly well the $\lambda(^1L_a)$ and $\lambda(^1B_b)$ of azulene as shown in Table V. The scheme of configuration interaction in a derivative having a chromophor, such as $-NO_2$, -NO, -COR, etc., is an intricate problem. However, the preliminary calculation shows that the 1L_a absorptions of such derivatives are satisfactorily calculated by Eq. 8.

Conclusion

The results of this study indicate that the HMO method is applicable to the prediction of the three π - π * absorptions of conjugated systems, when we set up the appropriate relationships. Simple correlation equations provided in the present study are particularly useful for the alternant hydrocarbons and their α -derivatives having an auxochromic group and also for some N-heterocycles. In order

650 [Vol. 39, No. 4

to predict the electronic spectra of β -derivatives and the derivatives having a chromophor, we have to set up other relationships considering the complicated configuration interaction scheme.

The author gratefully wishes to acknowledge the many kindneses and the most generous financial support of the Mellon Institute which has made his extremely enjoyable stay at the Institute possible
